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Abstract Apomixis is defined as asexual reproduction
through seeds, although this outcome can be achieved by
multiple pathways. Since little is known about the
molecular control of these pathways, how they might
intersect is also a mystery. Two of these pathways in the
grass family, diplospory and apospory, are receiving
attention from molecular biologists. Apospory in Pen-
nisetum/Cenchrus, two genera of panicoid grasses, results
in the formation of four-nucleate embryo sacs that lack
antipodals. Sexual reproduction frequently aborts so that
the resulting seed is composed of (1) a parthenogeneti-
cally derived embryo that is genetically identical to the
mother and (2) endosperm formed through pseudogamy.
The transmission of apomixis is associated with the
transfer of a linkage block on a single chromosome. This
linkage block contains repetitive sequences as well as
hemizygous, low-copy DNA sequences. Fluorescence in
situ hybridization has demonstrated that these DNA
regions occur on only a single chromosome, but not its
homologs, in the polyploid apomicts studied. Features of
the apomixis-associated region resemble those of other
chromosomal segments isolated from recombination and
replete with “selfish” DNAs.

Keywords Apomixis · Agamospermy · Apospory ·
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Introduction

Apomixis is a term that indicates the developmental
outcome of asexual reproduction through seeds. Although
a seemingly simple definition, several pathways can be

followed by flowering plants to achieve this outcome
(Nogler 1984a; Crane 2001). Until we understand the
molecular mechanisms underlying these pathways, we will
not be able to determine to what extent the apparently
independent pathways leading to apomixis may actually be
integrated with one another through the developmental
network of the ovule. Upon deeper reflection on the
consequence of apomixis, one realizes that it poses not only
a fascinating scientific challenge to explore the develop-
mental adaptations of the ovule, but also a tremendous
practical opportunity for plant breeding and hybrid produc-
tion (Hanna 1995; Savidan 2000). The vigor of hybrids
between divergent genotypes is often greater than that of
inbreds as a result of heterosis. Hybrid breeding is the
foundation for production of many crops in developed
countries. Progeny from these hybrids are obviously not
genetically uniform; therefore, crosses to produce hybrid
seed must be made repeatedly. An apomictic hybrid could
radically change this situation, since it could produce
genetically identical offspring. Unfortunately, no major
crops demonstrate apomictic reproduction.

The broad categories into which apomicts have been
grouped include adventitious embryony, a sporophytic
type of apomixis, and two gametophytic forms, diplo-
spory and apospory (Koltunow 1993; Fig. 1). In sporo-
phytic apomixis, there is no alternation of generations
required for the development of embryos of the maternal
genotype because one or more non-generative cells of the
ovule derive the fate of embryo initials which directly
form embryos. This type of apomixis is commonly
associated with Citrus (Koltunow et al. 1995a). In
gametophytic apomixis, the female gametophyte (embryo
sac) develops from the megaspore mother cell after
mitotic division (diplospory) or from a nearby nucellar
cell (apospory). In both cases, the female gametophyte
contains nuclei that are genetically identical to the
maternal parent since they are products of mitosis, not
meiosis. Furthermore, one of these nuclei becomes the
egg cell which continues to undergo only mitotic division
in the absence of fertilization. This parthenogenetic
development of the egg cell must be accompanied by
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endosperm formation in order to produce viable seed. The
endosperm develops autonomously from the central cell
in some apomicts, but most require pollination and
probably fertilization of the central cell (pseudogamy).
Therefore, to achieve apomixis in crops, female meiosis
must be subordinated or placed under inducible control,
the embryo must develop from a maternal, genetically
unaltered cell, and compatible endosperm will be re-

quired. Much has been learned about these “components”
or “elements” of apomixis by the study of natural
apomicts and mutants of sexual plants (Grossniklaus et
al. 2001). This combined knowledge may eventually
allow the “synthesis” or “transfer” of apomixis in non-
apomictic plants.

Reviews with apomixis as the subject are numerous
(Asker and Jerling 1992; Grimanelli et al. 2001; Gross-
niklaus et al. 2001; Koltunow et al. 1995b; Roche et al.
2001a; Savidan 2000; Spillane et al. 2001; van Dijk and
van Damme 2000). This review will be more narrowly
focused on a group of species in the grass family
(Poaceae), subfamily Panicoideae, tribe Paniceae. These
closely related species that display apomixis reproduce by
the formation of aposporous embryo sacs within which
parthenogenetic development of the egg cell and fertil-
ization of the central cell complete the apomictic
pathway. Both developmental and molecular research on
this group of species will be discussed.

Phylogeny of Pennisetum and Cenchrus

The phylogeny of the subfamily Panicoideae has recently
been investigated using the chloroplast gene ndhF (Gius-
sani et al. 2001). The subfamily was concluded to be
monophyletic and the tribe Paniceae (x=9 members) was
one of three strongly supported clades within this subfam-
ily. The other two clades were Andropogoneae and
Paniceae (x=10 members). The x=9 Paniceae clade
includes, among others, the genera Pennisetum, Cenchrus,
Setaria, Brachiaria, and Panicum (some species), all of
which contain apomictic species or cytotypes. Using
another chloroplast gene, rpoC2, Duvall et al. (2001)
confirmed the monophyly of the x=9 Paniceae clade, but
Cenchrus (C. ciliaris, C. agrimonioides, C. echinatus) and
Pennisetum (Pennisetum sp., P. clandestinum and P.
setaceum, P. purpureum) formed paraphyletic groups
within the monophyletic “bristle” clade. Similarly, Gius-
sani et al. (2001) and Doust and Kellogg (2002) concluded
that Pennisetum (P. alopecuroides and P. setaceum) falls in
a monophyletic “bristle” clade with Cenchrus, although the
Cenchrus clade (C. ciliatus, C. echinatus, C. myosuroides,
C. setigerus) was derived from the paraphyletic Pennise-
tum, and indeed, C. ciliaris (buffelgrass) is often identified
by its synonym Pennisetum ciliare (Hitchcock 1951).
Clearly, only some species of the larger x=9 Paniceae clade
contain apomicts, but these recent observations on the
phylogenetic position of Pennisetum and Cenchrus, to-
gether with our previous demonstration of the conservation
of molecular markers linked to apomixis (Lubbers et al.
1994; Roche et al. 1999), support our working hypothesis
that apomixis may have evolved once within this group.

Apomixis in Pennisetum and Cenchrus

Within the genus Pennisetum, at least 17 species
containing apomictic cytotypes have been described

Fig. 1 Ovule development as governed by different types of
apomixis. The nucellus (n) is the site of divergent developmental
patterns. The labeled ovule shows the nucellus surrounded by two
integuments (i) that remain unfused at the micropyle (m). In sexual
reproduction, a single megaspore mother cell (mmc) develops at the
micropylar end of the nucellus and undergoes meiosis to form a
linear tetrad of four megaspores (blue). The three micropylar
megaspores degenerate, leaving the chalazal megaspore to develop
into an eight-nucleate, seven-celled embryo sac. Each nucleus of
the embryo sac (blue) is haploid with respect to the maternal tissue
(peach). In adventitious embryony, the same developmental
processes occur as in sexual reproduction with a superimposed
direct development of nucellar (adventitious) embryos (ae) sur-
rounding the embryo sac. In diplospory, meiosis is either
completely or partially bypassed so that the single embryo sac
formed from the mmc contains unreduced nuclei. At anthesis, the
structure of the ovule may be indistinguishable between diplospory
and sexual reproduction. In apospory, sexual reproduction can
sometimes proceed to completion, but is most often arrested in
favor of one or more unreduced embryo sacs that develop from
somatic cells of the nucellus
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(Table 1). Diploid members of a species are always
sexual, but polyploid cytotypes typically are apomictic
and reside in the x=8/9 group of species that comprise the
tertiary gene pool of pearl millet [P. glaucum (L.) R. Br.;
Harlan and deWet 1971]. Pearl millet is the major
cultivated member of the genus and is grown in tropical
and sub-tropical regions for forage and grain. This
domesticated species has a basic chromosome number
of x=7 which probably reflects a derived state from the
predominant basic chromosome number of x=9 in the
genus.

Apomictic species/cytotypes of Pennisetum/Cenchrus
display very similar ovule developmental patterns. Apo-
mixis is of the gametophytic and aposporous type with a
four-nucleate megagametophyte at maturity (Fig. 2). The
progression of developmental events has been most
thoroughly described for C. ciliaris (Fisher et al. 1954;
Snyder et al. 1955; Sherwood 1995; Vielle et al. 1995;
Peel et al. 1997), and P. squamulatum (Dujardin and
Hanna 1984a; Chapman and Busri 1994; Peel et al. 1997;
Wen et al. 1998), although data are available for other
apomictic Pennisetum species (Simpson and Bashaw
1969; Jauhar 1981; Dujardin and Hanna 1984a). In both
sexual and apomictic genotypes, an archesporial cell is
specified and becomes the megaspore mother cell (MMC)
whose wall contains callose (Peel et al. 1997). The MMC
enters meiosis, but megaspore formation in apomicts
typically is incomplete, its termination varying from the
early initiation stage of meiosis to the triad or tetrad stage.
Aposporous initials can be observed to develop from
nucellar cells in proximity to the MMC or its products,
and it is possible that their development may influence the
events of meiosis by affecting the position of cell division
plates (Peel et al. 1997). The aposporous initials continue
to enlarge and the nuclei begin to divide, often in multiple
initials. As many as eight aposporous embryo sacs have
been observed in some genotypes of C. ciliaris and the
number may be under quantitative genetic control given
the variation observed among genotypes (Snyder et al.
1955). Aposporous embryo sacs often occupy most of the
nucellar region, and those that reach maturity contain four
nuclei in three to four cells. The aposporous embryo sac
nearest the micropyle may develop faster than the others
(Wen et al. 1998). The mature aposporous embryo sac has
an egg, one or two synergids and one or two polar nuclei.
Snyder et al. (1955) observed that the egg apparatus was
positioned toward the nearest outer cell layer of the
nucellus which often was distant from the micropyle. At
anthesis, uninucleate central cells (Snyder et al. 1955;
Chapman and Busri 1994; Vielle et al. 1995; Morgan et

Fig. 2 Panicum-type embryo sac structure at maturity. The
Panicum-type embryo sac contains only four unreduced nuclei at
maturity. The natural apomicts, Cenchrus ciliaris and P. squamu-
latum, have predominantly uninucleate central cells, perhaps as a
means to avoid deleterious maternal:paternal genome ratios in
endosperm after fertilization of the central cell. An introgression
line, BC3, where apomixis was transferred from P. squamulatum to

pearl millet, has predominantly binucleate central cells and displays
low seed set due in part to endosperm abortion. The number of
synergids can be one or two because they appear to compensate for
the variable number of polar nuclei. The remaining nucleus is
designated as the egg which develops without fertilization (after
Vielle et al. 1995; Morgan et al. 1997). e Egg, p polar nucleus, s
synergid

Table 1 Species in the genera Pennisetum and Cenchrus that
contain apomictic cytotypes. Data and original references can be
found in Dujardin and Hanna (1984a), Fisher et al. (1954), Hanna
(1987), Jauhar (1981), and Schmelzer (1997). Morphological
descriptions of the species shown in bold can be found in the
World Grasses Database at the Kew Royal Botanic Gardens (<exref
type=“URL”>www.rbgkew.org.uk/herbarium/gramineae/wrld-
gr.htm</exref>)

Species 2n x

C. ciliaris 36 9
C. setigerus 36 9
P. clandestinum 36 9
P. dubium 14–86 ?
P. flaccidum 18, 36 9
P. frutescens 63 9
P. hordeoides 36, 54 9
P. latifolium 36 9
P. macrostachyum 54 9
P. macrourum 36 9
P. massaicum (syn. P. mezianum) 16, 32 8
P. orientale 18, 27, 36, 45, 54 9
P. pedicillatum 36, 45, 54 9
P. polystachion 18, 36, 45, 54 9
P. setaceum 27, 54 9
P. setosum 54 9
P. squamulatum 54 9
P. subangustum 18, 36, 54 9
P. villosum 18, 27, 36, 45, 54 9
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al. 1998) and binucleate central cells (Chapman and Busri
1994; Vielle et al. 1995; Morgan et al. 1998; Wen et al.
1998) have both been observed in mature four-nucleate
aposporous embryo sacs. Wen et al. (1998) reported that
the two central cell nuclei fuse to form a secondary
nucleus prior to anthesis, although Sherwood (1995)
reported that the polar nuclei had a 2C DNA content
expected of a diploid (unreduced) cell in the G1 phase of
the cell cycle. No seeds are formed in the absence of
pollination (Snyder et al. 1955; Simpson and Bashaw
1969), but there is some disagreement regarding the need
for fertilization of the central cell. Wen et al. (1998)
reported that the secondary nucleus divides after stimu-
lation by pollination. Fisher et al. (1954) could not
observe pollen tubes entering ovules and presumed that
pollination alone may be sufficient, although Snyder et al.
(1955) did observe pollen tube entry into embryo sacs of
similar materials, while Birari (1981) provided evidence
for sperm entry into central cells. The observation of 3n
chromosome numbers in endosperm of C. ciliaris (Snyder
et al. 1955) and 3C DNA amounts in endosperm of an
apomictic backcross (Morgan et al. 1998) is evidence that
endosperm development requires not only pollination, but
also fertilization. Synergid degeneration can be observed
prior to pollination and/or fertilization (Chapman and
Busri 1994; Vielle et al. 1995). The embryo develops
parthenogenetically, i.e., without fertilization, and divi-
sions occasionally are initiated prior to anthesis (Simpson
and Bashaw 1969; Birari 1981; Vielle et al. 1995; Wen et
al. 1998). For unreduced eggs which have not become
activated prior to anthesis, the cell wall becomes complete
shortly after pollination, contrary to no change in cell wall
structure observed in the reduced egg (Vielle et al. 1995).

Two irradiation-induced reproductive mutants have
been recovered from sexual P. glaucum whose pheno-
types show components of apomixis (Hanna and Powell
1973, 1974). One of these, female sterile, is a simply
inherited trait where the ovules are immature at anthesis
and in which megasporogenesis aborts and multiple
embryo sacs are formed (Hanna and Powell 1974; Arthur
et al. 1993). The embryo sacs are largely non-functional,
however, since no seed formation occurs. The second
mutant, stubby head, segregates as a two-linked-gene trait
and results in multiple ovules as well as multiple embryo
sacs within an ovule (Hanna and Powell 1973; Morgan et
al. 1997). Test crosses using stubby head as the female
parent and pearl millet containing a dominant marker as
the male parent have provided evidence for maternal
reproduction in this mutant (no transmission of the
dominant marker to test-cross progeny). Neither mutant
has been studied at the molecular level because pleiotro-
pic effects in each extend to gross morphological changes
in inflorescence structure (Morgan et al. 1997). These
complex phenotypes suggest that different or additional
components of the network of reproductive gene expres-
sion may be affected compared with naturally occurring
apomixis in the genus.

Inheritance of apomixis

Apomixis (apospory) in Pennisetum/Cenchrus behaves as
a single dominant trait, but always exists in the hetero-
zygous condition in an apomictic parent. All of the
Pennisetum/Cenchrus apomicts are polyploid ranging
from triploid to hexaploid, and rarely higher (Table 1).
Polyploid genetics increases the complexity of segrega-
tion analysis, particularly when little is known about the
pairing relationships of individual chromosomes. Never-
theless, because of the interfertility between several of the
apomictic Pennisetum species and pearl millet, it has been
possible to study the transmission of apomixis in inter-
specific crosses (Hanna 1987). The most successful
crosses were conducted with diploid or induced tetraploid
pearl millet as the female parent by P. squamulatum, P.
setaceum, or P. orientale as pollen donors (Dujardin and
Hanna 1989a; Marchais and Tostain 1997). Relatively
few hybrids were obtained from crosses with the latter
two species, although crosses between tetraploid pearl
millet and P. squamulatum were highly successful. These
F1 hybrids segregated for mode of reproduction (apomixis
vs sexuality; Dujardin and Hanna 1983) and have been
useful for genetic mapping studies (Ozias-Akins et al.
1998). Such hybrids are often highly male fertile, but
fertility declines dramatically in the first backcross to
pearl millet, preventing their use in a backcross breeding
program (Dujardin and Hanna 1985, 1989b). Male
fertility could be maintained, however, when a bridging
species (sexual P. purpureum) was introduced into the
breeding scheme (Dujardin and Hanna 1984b, 1989b).
The transmission of apomixis and linked molecular
markers in these materials will be discussed in detail
below.

For tetraploid C. ciliaris, intraspecific crosses between
sexual and aposporous genotypes have shown that a
single dominant allele appears to be required for the
transmission of apomixis although it has been reported to
exist in either the simplex or duplex condition (Sherwood
et al. 1994). The gene for apomixis also can be hypostatic
to a gene for sexuality (Taliaferro and Bashaw 1966);
therefore, in this special situation, apomicts can segregate
in the offspring of a sexual plant. The genotypes being
used in the more recent molecular studies of apomixis in
buffelgrass (Gustine et al. 1996, 1997; Roche et al. 1999;
Jessup et al. 2002) do not show evidence for hypostasis of
apomixis and may have lost any epistatic “suppressor” of
apomixis.

Molecular markers for apomixis

The application of molecular markers to genetic studies of
apomixis has grown considerably beyond the first such
publication in 1993 (Ozias-Akins et al. 1993). Molecular
markers, particularly those that are PCR-based, have been
used for the analysis of genetic uniformity among
offspring of a suspected apomict (Nybom 1996). Such
markers also are proving invaluable for mapping regions
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of genomes associated with components of apomixis or
the complete reproductive process (Grossniklaus et al.
2001). In aposporous grasses, there is little evidence that
parthenogenesis can segregate independently of apospor-
ous embryo sac development, except in the case of Poa
(Albertini et al. 2001). In the Asteraceae, however,
evidence for genetic separation of parthenogenesis and
diplosporous embryo sac formation is more compelling
(Noyes and Rieseberg 2000; van Dijk et al. 1999).

Molecular markers based on linkage with apomixis
(Barcaccia et al. 1998; Grimanelli et al. 1998; Gustine et
al. 1997; Labombarda et al. 2002; Leblanc et al. 1995;
Noyes and Rieseberg 2000; Ozias-Akins et al. 1993,
1998; Pessino et al. 1997, 1998; Pupilli et al. 2001; Roche
et al. 1999; Jessup et al. 2002) and on expression
differences between sexual and apomictic genotypes
(Chen et al. 1999; Leblanc et al.1997; Pessino et al.
2001; Vielle-Calzada et al. 1996) have been isolated.
None of the differentially expressed sequences have yet
been shown to be linked with apomixis. Expressed
sequences isolated from pistils of aposporous apomicts
that have been deposited in GenBank (as of April 2003),
along with their putative functions, are listed in Table 2.

Markers linked with apomixis have largely been
derived from random PCR-based markers, anonymous
DNAs cloned from the species being mapped, or from
cloned DNAs from other species. Many of the DNAs
from other species such as maize and rice have had the
advantage of being mapped in those and related species;
therefore, the emergence of syntenic relationships among

cereals might be expected. Although synteny does appear
to exist between the apospory-associated region of
Brachiaria brizantha and maize chromosome 5 (Pessino
et al. 1997, 1998), of Paspalum simplex and rice
chromosome 12 (Pupilli et al. 2001), and of buffelgrass
and sorghum chromosome D (Burow et al. 2001), the
syntenic regions on the grass circle (Gale and Devos
1998) are incongruent. These results could be explained
by the polyphyletic origin of aposporous apomixis in the
tribe or by genome rearrangements that have disturbed
local synteny. In spite of segregation of apomixis as an
apparently single locus, several mapping studies have
observed a repression of recombination at the locus (see
below), which suggests that the locus may be large,
encompassing multiple genes, perhaps more than one of
which may be required for apomixis.

Molecular markers in Pennisetum/Cenchrus

Molecular markers linked with apomixis were first
isolated from an apomictic addition/substitution line of
pearl millet referred to as BC3 (Ozias-Akins et al. 1993).
A single BC3 plant was obtained through an introgression
program intended to transfer apomixis to pearl millet
(Dujardin and Hanna 1989b). It is a near-obligate
apomict, thus its offspring are genetically identical. Since
BC3 was the product of a complex cross involving two
inbred lines of tetraploid pearl millet, P. purpureum and
P. squamulatum, molecular marker analysis was focused

Table 2 Sequences isolated from or expressed in reproductive organs of aposporous apomicts. Table does not include the 950 EST
sequences deposited from a P. ciliare apomictic pistil cDNA library (GenBank accession nos. BM083978–BM084927)

GenBank
accession no./Author

Organism Isolation
methoda

Size
(bp)

Similarity to known genesb

AF325717/Li et al. P. ciliare cDNA 995 None
AF325718/Li et al. P. ciliare cDNA 822 None
AF325719/Li et al. P. ciliare cDNA 965 Calcium-binding protein
AF325720/Li et al. P. ciliare cDNA 851 Calreticulin
AF325721/Li et al. P. ciliare cDNA 1,216 Hypersensitive-induced response protein
AF325722/Li et al. P. ciliare cDNA 649 Arabidopsis thaliana hypothetical protein
AF325723/Li et al. P. ciliare cDNA 1,160 Phosphate-induced (phi1) protein
U65386/Hussey P. ciliare DD 242 None
U65387/Hussey P. ciliare DD 329 None
U65388/Hussey P. ciliare DD 263 None
U65389/Hussey P. ciliare DD 199 None
D37940c/Hulce et al. P. ciliare cDNA 486 None
D37938c/Hulce et al. P. ciliare cDNA 1,398 Oryza sativa unknown protein
D37939c/Hulce et al. P. ciliare cDNA 876 Ankyrin-repeat protein
U40219/Hulce et al. P. ciliare cDNA 941 GTP-binding protein (RAS-related Rab7)
AB000809/Chen et al. Panicum maximum cDNA 1,177 Dehydration-responsive protein

(BURP domain-containing protein)
AF242537/Pessino et al. Paspalum notatum DD 396 Similar only to AF242538, AF242539
AF242538/Pessino et al. Paspalum notatum DD 398 Similar only to AF242537, AF242539
AF242539/Pessino et al. Paspalum notatum DD 417 Similar only to AF242537, AF242538
AJ271598/Tucker et al. Hieracium piloselloides cDNA 1,328 Beta-1,3-glucanase
AF180365/Guerin et al. Hieracium piloselloides cDNA, DD 687 DEFICIENS homolog DEF2
AF180364/Guerin et al. Hieracium piloselloides cDNA, DD 875 DEFICIENS homolog DEF1

a cDNA cDNA library, DD differential display
b Similarity based on E values <e-06
c Previous entries in GenBank with identical sequence (D37940 = U13147, Z36545; D37938 = U13148, Z36544; D37939 = U13149,
Z36546)
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on polymorphisms in BC3 which were unique to the
apomictic parent, P. squamulatum, and their transmission
to the BC4 generation. Out of seven polymorphic markers
from P. squamulatum, only two were shown to be linked
with apomixis providing evidence that more than one
chromosome from P. squamulatum was present in BC3,
but that all may not be required for apomixis. Recombi-
nation was not observed between the two apomixis-linked
markers, which might have been expected given the
addition of an alien chromosome to a divergent genetic
background. A genetic map, however, would require
materials with meiotic recombination. This condition was
subsequently met by mapping the male gamete contribu-
tion to an F1 population of pearl millet � P. squamulatum
(Ozias-Akins et al. 1998). Pools of DNA from individuals
with discrete reproductive phenotypes were surveyed for
DNA polymorphisms (bulked segregant analysis; Michel-
more et al. 1991). Polymorphisms detected with this
sampling method have a high probability of being linked
to the trait of interest that was distinctly represented in
each DNA pool. The polymorphisms consisted of ran-
domly amplified polymorphic DNAs (Williams et al.
1990; Welsh and McClelland 1990) which were convert-
ed to sequence characterized amplified regions (SCARs;
Paran and Michelmore 1993) prior to mapping. Unex-
pectedly, all 12 of these PCR-based markers strictly
cosegregated with the capacity for aposporous embryo sac
formation in a progeny size of 397 individuals. The lack
of recombination in this case was not related to the
interspecific hybrid nature of the mapping population
because only the gametes from P. squamulatum provided
information for mapping. Potential causes for low or nil
recombination will be discussed below.

Interestingly, many of the apomixis-linked markers
from P. squamulatum are conserved in their association
with apomixis in other Pennisetum and Cenchrus species
(Lubbers et al. 1994; Roche et al. 1999). Ten of the P.
squamulatum-derived markers have been mapped in an
intraspecific hybrid of buffelgrass (a total of 84 F1
individuals segregating for mode of reproduction) but
only one potential recombinant with one marker was
observed (Roche et al. 1999). Other RAPD markers with
linkage to the trait in this population also have been
described (Gustine et al. 1997). Thus far, all PCR-based
markers isolated have been linked in coupling with
apomixis which could reflect the presence of a higher
level of polymorphism in the chromosomal region
required for apomixis vs the allelic regions of
homo(eo)logous chromosomes, or it could reflect the
low probability of detecting markers linked in repulsion in
polyploids with random chromosome pairing (Wu et al.
1992) as has been suggested for P. squamulatum (Ozias-
Akins et al. 1998) and buffelgrass (Sherwood et al. 1994).
Through our work, evidence is mounting that the
chromosomal region associated with the transmission of
apomixis has been subject to evolutionary forces different
from those affecting other regions of the genome,
probably as a consequence of its low/nil recombination
and maintenance through apomictic reproduction. Fea-

tures of its behavior that are contrary to most genetic
studies are (1) transmission of the apospory-specific
genomic region (ASGR) as a tight linkage block of
unknown, but probably large size (Roche et al. 2002) and
(2) severe segregation distortion against transmission of
the trait through rare female meioses and slight segrega-
tion distortion through the male (Roche et al. 2001b).
Possible explanations for such behavior have been
reviewed in Roche et al. (2001a), all of which are based
on chromatin or chromosomal context. We recently have
determined the chromosomal positions of the ASGR in
Pennisetum/Cenchrus and have visualized extensive
hemizygosity, both of which support our hypotheses for
the underlying cause(s) of low/nil recombination.

Molecular cytogenetics

During the course of genetic mapping with PCR-based
markers, the copy number of apomixis-linked markers
was estimated by Southern blot hybridization with
genomic DNAs. Six out of 12 of the P. squamulatum-
derived markers were of high copy number in P.
squamulatum whereas the other 6 were low copy. Of
the 6 low-copy markers, 4 showed hybridization only to
apomictic F1 individuals meaning that no allelic fragment
was transmitted to sexual F1s (Ozias-Akins et al. 1998).
These markers were considered to be hemizygous.
Hemizygosity of an apomixis-linked marker also has
been recently observed in Paspalum simplex (Labombar-
da et al. 2002). The 6 low-copy markers from P.
squamulatum have been used to isolate BAC clones from
a library constructed from an apomictic polyhaploid plant
containing the complete ASGR from P. squamulatum
(Roche et al. 2002). The markers that were mapped in
buffelgrass were also used to extract BAC clones from a
buffelgrass library. These BAC clones have been finger-
printed and analyzed by hybridization. Both methods of
analysis indicate that some markers which are hemizy-
gous are nevertheless duplicated within the ASGR and
thus reside on the same chromosome (Roche et al. 2002).

Fluorescence in situ hybridization (FISH) has become
an important tool in plant genetics for validation of
genetic and physical maps (Cheng et al. 2001; Kim et al.
2002). In the application of FISH to our materials, we
have not yet visualized the duplications mentioned above,
although the hemizygosity has been confirmed (Fig. 3a).
FISH also has become essential for determining the
chromosomal location of the ASGR and for defining the
physical distances between markers that do not geneti-
cally recombine or do so at frequencies below our current
level of detection. Using BAC clones that contain ASGR-
linked marker sequences, we have determined that: (1) all
of the clones tested thus far hybridize to only a single
chromosome in hexaploid P. squamulatum and in tetra-
ploid C. ciliaris; (2) the chromosomal position of the
ASGR differs between the two species—it is proximal to
the centromere in C. ciliaris and near the telomere in P.
squamulatum; and (3) the buffelgrass chromosome car-
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rying the ASGR also has a ribosomal DNA locus (Goel et
al. 2003). Although all of the signals from two-color FISH
with different combinations of BAC clones appear to
overlap on mitotic chromosomes, the signals can be
separated on pachytene chromosomes (Fig. 3b). As BAC
clones are isolated with additional molecular markers
mapped to the ASGR, it will be possible to position these
BACs relative to one another by pachytene FISH.
Pachytene FISH also has provided us with the information
for selection of BACs flanking the narrowest gap that
would have a good chance of closure during a chromo-
somal walk.

FISH with BACs mapped to the ASGR but containing a
considerable proportion of repetitive DNA has also been
very informative for characterization of this genomic
region. The first indication that repetitive sequences were
clustered in the ASGR came from hybridization of a pool
of repetitive SCAR markers to BC3 and its derivatives to
BC7. In dual-color FISH, the pool of ASGR-linked markers
was labeled with one fluorophore and total genomic DNA
of P. squamulatum was labeled with a second fluorophore.
Both were probed onto mitotic spreads along with blocking
DNA from the recurrent backcross parent, pearl millet. In
some apomictic backcross lines, only a single chromosome
that hybridized with P. squamulatum DNA was present and
the end of one chromosome arm was labeled with the
ASGR-linked markers (Fig. 4; Goel et al. 2003). This
signal from repetitive SCARs has been further investigated
with BACs containing the repetitive SCARs. The BACs
hybridize to pachytene chromosomes in two clusters near
the end of the chromosome (Fig. 3b). At least one of the
SCAR sequences, R13, that contributes to the distal
hybridization signal has sequence similarity to a retro-

transposon as determined by BLASTX (maize retrotrans-
poson Opie-2, GenBank accession T04112, E-value of 5e-
11; rice sequence from chromosome 1 PAC, GenBank
accession BAB03384, E-value of 2e-20). Thus far, out of
about 50 end-sequences from apomixis-linked Pennisetum/
Cenchrus BACs, >30% show similarity to retrotransposon-
like sequences. SCAR R13 hybridizes not only with
multiple bands in BACs containing the R13 SCAR, but
also with BACs isolated with four other repetitive SCARs
(although not within the SCARs themselves). Using FISH,
all of these BACs containing repetitive sequences show a
similar pattern of hybridization as shown in Fig. 3b (green
signal). The FISH signal is prominent on only a single
chromosome of P. squamulatum, although Southern blot
analysis indicates that sequences similar to R13 are also
dispersed in the genome of pearl millet and P. squamu-
latum. More extensive sequence characterization will be
necessary to verify the retrotransposon-like families and
diversity within the ASGR; however, these preliminary
results suggest that this region of the genome may be
evolving in a similar manner as Y (Kuroda-Kawaguchi et
al. 2001; Okada et al. 2001) and B chromosomes
(Camacho et al. 2000; Langdon et al. 2000; Stitou et al.
2000), both of which are largely isolated from recombi-
nation and accumulate repeated sequences.

Features of the genomic region required
for apomixis resemble selfish genetic elements—
molecular parasite or mutualist?

Selfish DNA proliferates in a genome to ensure its own
survival but confers no obvious benefit to the host and

Fig. 3 a Fluorescence in situ hybridization (FISH) of BACs,
containing apospory-specific genomic region- (ASGR) linked
markers, to metaphase chromosomes of polyploid Pennisetum
squamulatum reveals only a single chromosome with strong
hybridization signal (green). Red signal indicates hybridization of
a centromeric probe. The hemizygous nature of the ASGR has been
observed with BACs containing repetitive DNA (green signal) and

low-copy DNA sequences (Goel et al. 2003). b Pachytene
chromosomes of P. squamulatum hybridized with three BACs:
one containing repetitive sequences (green signal) and two
containing low-copy sequences (red signals or yellow where red
and green signals overlap). The region delineated by the signal
from repeats (green) flanks a largely low-copy region and
encompasses approximately half of a chromosome arm
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may actually decrease fitness. Transposable elements
have been described by some as selfish DNAs (Orgel and
Crick 1980; Doolittle and Sapienza 1980), although the
prevailing view is that such molecular parasites, which
most often induce deleterious mutations in the genome,
also can be co-opted for altering gene regulation and
diversity in a continuum that leads to “domestication” of
these elements over the long term (McDonald 1995; Zeyl
and Bell 1996; Kidwell and Lisch 2001). Evolutionary
theory predicts that such elements require sex to spread
and after a period of accumulation, would be driven to
extinction in asexual organisms (Charlesworth and
Wright 2001).

Apomixis is an evolutionarily derived trait that can
coexist with sex in many genotypes. In near-obligate
apomicts the genome may be isolated from meiotic
recombination for many generations because the mode of
reproduction is strictly asexual and maternal. This repro-
ductive isolation may allow many somatically derived
mutations to accumulate as long as they are mildly or non-
detrimental to the asexual lineage. Since most pseudoga-
mous apomicts still require viable pollen, gene flow from
apomicts through the male is possible, and these meiotic
events may constrain any mutant alleles to those that are
not deleterious in the haploid male gametophyte. Another
mechanism for maintenance of mutant alleles is poly-
ploidy. In fact, there is some evidence that homozygosity
of the apomixis-associated region in a haploid male
gametophyte may reduce its viability (Nogler 1982,
1984b). This effect is presumably due to linked recessive,
deleterious alleles and may enforce polyploidy. Therefore
the dynamics of transposable element evolution in a
pseudogamous apomict may be balanced by the lack of
maternal sex and the need for paternal sex.

Why does the apomixis-associated region in Pennise-
tum/Cenchrus appear to be evolving in a manner different
from other regions of the genome that also are largely
isolated from meiotic recombination because of the
asexual mode of reproduction? Is a region of a single
chromosome, presumably with pairing homologs in these
polyploid genomes, maintaining and perhaps accumulat-
ing sequence differences? Or, alternatively, could the
apparent hemizygosity be due to sequence elimination
that occurred at the time of allopolyploidization (Eckardt
2001)? Perhaps this region of the genome is gene poor or
harbors duplicate genes that are dispensable because of
their redundancy. Such a situation might permit the
accumulation of retrotransposon-like repetitive sequences
through somatic transposition either because the transpo-
sition events may have been targeted to or better tolerated
by this region of the genome. Transposable elements are
known to accumulate in gene-poor, heterochromatic
regions of a genome (McDonald 1998; Dmitri and
Junakovic 1999) and their accumulation can even incite
the formation of heterochromatin (Steinemann and
Steinemann 1997). Our data (based on DAPI staining of
pachytene chromosomes and contraction ratios between
specific points on the chromosome) do not support the
idea that the ASGR is a large, uniformly heterochromatic
block, but the technique is insufficient in resolution to
precisely define small heterochromatic regions. If the
hybridization signals shown in Fig. 3b do represent
clusters of retrotransposon-like sequences, is this pattern
simply the consequence of recombinational isolation and
low gene density or is there some functional significance?
Could rearrangements such as inverted repeats, being
accelerated by the presence of transposons, or the host
response to transposon invasion of what is now the
ASGR, underlie the evolution of apomixis? Or is the
abundance of repeats in the ASGR of P. squamulatum
simply a consequence of genome tolerance?

The genetic studies with apomicts in the grass family
still have not resolved the question of whether one gene or
multiple genes are required for expression of the pheno-
type. Are there transcribed genes interspersed among the
repetitive sequences, similar to the pericentromeric
regions of Arabidopsis (Lin et al. 1999), that may serve
as regulatory genes or part of a signaling pathway
required for the initiation of apomixis? It is conceivable
that a single transcribed gene, such as the hypothetical
embryo sac initiator proposed by Peacock (1992), is
embedded amongst repeats or even encoded by a repeat.
A Y chromosome-specific, male sex organ-expressed
gene in the liverwort, Marchantia polymorpha, is em-
bedded in repeat unit variants (Okada et al. 2001). Testis-
specific transcription has been observed for multiple
genes interspersed with massive repeats in the AZfc region
of the Y chromosome of humans (Kuroda-Kawaguchi et
al. 2001). Some of the transcription units in this region of
the Y chromosome are noncoding transcripts. The poten-
tial role of noncoding regulatory RNAs in growth and
development has only recently been recognized (Eddy
2001; Storz 2002; Voinnet 2002). Their function is likely

Fig. 4 Mitotic spread from an advanced backcross line with
Pennisetum squamulatum as the apomictic parent and tetraploid
pearl millet as the recurrent parent. Labeled total P. squamulatum
DNA (red) hybridized to a single chromosome in this backcross
line. Blue signal is from DAPI-stained chromosomes of pearl
millet. The green signal on the end of the red chromosome was
produced by the hybridization of a labeled mixture of ASGR-linked
SCAR DNAs
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to be connected to RNA silencing mechanisms, which
although first observed as epigenetic gene silencing (co-
suppression) in transgenic plants, are now understood to
be the result of a conserved, RNA-mediated genome
surveillance system (Plasterk 2002). Gene silencing
probably evolved as a response to viral and/or transposon
invasion (Vance and Vaucheret 2001).

The unusual genomic architecture of the ASGR tempts
us to consider models more complex than a single
regulatory protein for the control of apomixis. Ozias-
Akins et al. (1998) suggested that aspects of apomixis
could be explained by the action of the apomixis-
associated region to silence, in trans, genes expressed
during sexual development. Given our rapidly advancing
understanding of post-transcriptional gene silencing
(PTGS) and RNA interference (Baulcombe 2002; Llave
et al. 2002; Plasterk 2002), one could even speculate that
noncoding RNAs from the ASGR might be trans-acting
factor(s) responsible for the dominant, plastic, and
incomplete penetrance of apomixis in most systems. A
PTGS-related mechanism, originated in the hemizygous
repeat cluster, potentially could silence meiotic genes
involved in replication timing and pairing. Such genome-
wide silencing of sequences that have high similarity to
DNA that remains unpaired during meiosis has been
reported in Neurospora (Shiu et al. 2001). The possible
involvement of repeats and noncoding RNAs, in addition
to protein coding genes, in the expression of apomixis
should not be overlooked. Kashkush et al. (2003) recently
observed that newly synthesized wheat amphiploids
showed elevated transcript levels for one retrotransposon
family. Some of these transcripts were chimeric and also
contained adjacent protein-encoding gene sequences in
sense or antisense orientation. A corresponding change in
gene expression for these specific genes, some being
silenced and others activated, was observed. This addi-
tional mechanism for gene regulation based on transcrip-
tional activation of retrotransposons supports the
“mutualist” viewpoint for retrotransposon evolution. The
question of repetitive DNA in the ASGR as molecular
parasite or mutualist can only be answered once we more
narrowly delineate and thoroughly characterize the chro-
mosomal segment essential for apomictic reproduction.

Conclusions

Apomixis in the Pennisetum/Cenchrus clade is restricted
to pseudogamous apospory where the development of
four-nucleate embryo sacs may vary in the allocation of
nuclei to synergid and central cells. The egg develops
parthenogenetically into an embryo, sometimes being
activated prior to anthesis, while the nucleus/nuclei of the
central cell only show activity after pollination and likely
require fertilization for development into the endosperm.
Molecular mapping in P. squamulatum and C. ciliaris has
demonstrated that recombination is repressed in the
region of the genome required for apomixis (ASGR)
even though the chromosomal position of the ASGR

varies between the two species. The ASGR in P.
squamulatum contains abundant repeats and its evolution
may parallel that of Y and B chromosomes. The genetic
mechanism underlying apomixis remains to be elucidated
but could be as simple as a single regulatory protein-
encoding gene or as complex as the alteration (silencing)
of gene expression due to the genome context of multiple
gene sequences embedded in this region.
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